Photoionisation Modelling of the Emission Line Regions and Warm Absorbers in AGN

Sam Grafton-Waters

G. Branduardi-Raymont, M. Mehdipour, M. J. Page, E. Behar, J. Kaastra

N. Arav, S. Bianchi, E. Costantini, J. Ebrero, L. Di Gesu, S. Kaspi, G. A. Kriss, B. De Marco, J. Mao, R. Middei, U. Peretz, P.-O. Petrucci, G. Ponti

What are AGN and why should we care?

<u>AGN – in a Nutshell</u>

- $\bullet M_{BH} = 10^5 10^{10} M_{\odot}$
- $\bullet L_{bol} = 10^{34} 10^{41} W$
- Powered via accretion
- Matter also ejected into galaxy
 - Disk winds (UFO; v_{out} ~ 0.1 0.4 c; e.g. Tombesi et al. 2010,12,13)
 - Torus Winds (WA; v_{out} ~ 100 1000 km s⁻¹; e.g. Blustin et al. 2005)

Image courtesy: MIT Kavli Institute for Astrophysics and Space Research

10/10/19

AGN Unification Hα, [NII] λ6583 Adapted from DiPompeo et al. by Hickox & Alexander 2018 Type 1
 Type 2 6 [OIII] ^{λ4959} _{λ5007} Relative flux [arbitrary units] **5** Type 1 Ηβ [OII] **\3727** Narrow Line [OI] Hel Region Call H,K λ6300 λ5876 **Broad Line** Corona 3 Region Type 2 2018 2 Accretion Black disc hole Torus Unification Theory of AGN: Miller & Antonucci 1983; 4000 5000 6000 Antonucci & Miller 1985 λ [Å]

Origin of X-rays

- UV/Optical photons from accretion disc
- X-rays from hot Corona
- Reflected X-rays off the disc or torus

Motivation for studying AGN winds

• Main questions:

- Origin of winds
- Launching Mechanism
- Location and Geometry

M-σ relation

- Galaxy impact
- Co-evolution

Talk outline

1. Photoionisation modelling

- Photoionised Plasma properties
- Model: PION

2. Results from X-ray analysis on AGN

NGC 5548
NGC 3783

3. NGC 7469

My Analysis from Multiwavelength Campaign
 Distance Measurements

4. Current work: NGC 1068

➤Spectral analysis

5. Future: ATHENA

Photoionisation Modelling

PION model in SPEX

- Assume photoionisation equilibrium
 - Rate of ionisation = Rate of recombination
- State of the photoionised gas depends on the ionisation parameter $\boldsymbol{\xi}$

PION

- Self consistent model (M. Mehdipour et al. 2016)
- Simultaneously models the continuum and ionised plasma
 - Requires SED of AGN
- Computes both the photoionisation solution and X-ray spectrum

Plasma Properties

•
$$N_H$$
 - the line depth
• $10^{24} - 10^{28} \text{ m}^{-2}$
• $\xi \equiv \frac{L_{ion}}{nr^2}$ - ionisation
• $\log \xi = 0 - 3$

- v_{turb} line broadening • ~ $10^1 - 10^2$ km s⁻¹
- v_{out} line centring
 - $> 10^2 10^3 \text{ km s}^{-1}$
 - Blueshifted
- Multiple components to fit all the emission/ absorption lines

NGC 5548

ESA/Hubble

Spectral Features

Chandra Spectrum 2000; J. Kaastra et al 2000

RGS Spectrum 2013; M. Whewell et al. 2015

SGW – MSSL – Photoionisation Modelling of AGN

O VII Discrepancy

DSS; Simbad

SGW – MSSL – Photoionisation Modelling of AGN

UCI

J. Mao et al. 2018

Observer

E.M.

 $0.5^{+0.8}_{-0.4}$

 $1.5^{+4.1}_{-1.0}$

 13^{+53}_{-10}

 $1.0^{+0.6}_{-0.4}$

 30^{+19}_{-13}

13 (f)

NGC 7469

NASA/ESA/Hubble

RGS Analysis – Our Contribution

SGW – MSSL – Photoionisation Modelling of AGN

The Warm Absorber

Absorption	N _H	log	ξ	<i>V</i> _{turb}	<i>v_{out}</i>
Component	(10^{24} m^{-2})	(10^{-9} V)	Vm)	$({\rm km \ s^{-1}})$	$({\rm km \ s^{-1}})$
→ 1	$10.0^{+0.5}_{-0.4}$	$2.32 \pm$	0.01	35 ± 2	-630 ± 2
2	52.0 ± 2.2	3.00	(f)	<i>a</i> _	-910^{+50}_{-30}
→ 3	2.3 ± 0.1	1.57 ±	0.04	11 ± 3	-1960 ± 2
					SGW et a
Comp. v_{out}^{a}	v _{turb}	logξ	$N_{\rm H}$	ΔC	2019
# (km s ⁻	(km s^{-1})	$(\text{erg s}^{-1} \text{ cm})$	(10^{20} cm))	
$1 -650 \pm$	50 70 ± 10	-0.6 ± 0.2	0.2 ± 0	.1 33	
2	70 ± 10	1.4 ± 0.1	1.0 ± 0	.3 221	
→ 3 …	70 ± 10	2.0 ± 0.1	5.5 ± 1	.0 1027	
→ 4 -950_	$^{50}_{100}$ 35 ± 20	2.7 ± 0.2	22 ± 1	0 383	
→ 5 -2050+	$\frac{-50}{-160}$ 60 ± 30	2.0 ± 0.3	1.1 ± 0	.3 82	E. Behar e
6	60 ± 30	0.3 ± 0.2	0.1 ± 0	.1 48	al. 2017

SGW – MSSL – Photoionisation Modelling of AGN

R_{WA1} = 0.22 - 1.88 pc R_{EM3} ≥ 0.03 pc

WA1

Assume:

- Extended regions
- No further absorption by WA

Torus

R_{torus} = 1.21 pc

To observer

WA3

 $R_{WA3} = 0.02 - 0.60 \text{ pc}$

EM3

UCL

f = volume filling factor

Location of ELR

 $R_{WA2} = 0.10 - 0.30 \text{ pc}$

Central Engine

 $L_{ion} = 1.39 \times 10^{37} \, W$

 $M_{BH} = 1 \times 10^7 M_{\odot}$

WA2

Values for *f*

- Require *f* value < 1
 - $f \sim 0.01$ for most nebulae (e.g. Osterbrock 1991).
 - $f \sim 0.001$ for BLR (e.g. Sneddon & Gaskell 1999).
- For EM1 and EM2 we assume f = 0.1
- For EM3 f = 0.001

However

- Optical BLR $r_{BLR} = 0$
- GMBH Kinematics: v_{esc} vou
 - $r_{EM3} \simeq 0.$
- Possible solution: $f_{EM3} < 0.001$
- But most likely due to ξ of EM3

0.004 pc (Kollatschny & Zetzl 2013).
$= v_{out} \sim -4500 \text{ kms}^{-1} \left(R = \frac{2}{3} \right)$
004 pc.

2		Lion f	
• min	ı —	Ν _H ξ	

Emission	R		
Comp.	(pc)		
EM1	$2.62^{+0.31}_{-0.73}$		
EM2	$2.52^{+1.05}_{-0.81}$		
EM3	0.03 ± 0.01		

Conclusions for NGC 7469

- WA can be explained by 3 components different N_H , v_{out} , ξ
- Most emission lines are fitted with 2 narrow emission components
- Able to measure the distances of the Narrow Line Region
 - Assuming no further absorption by the WA
- Some lines require a broad component
 - Uncertain if it is a physical component

NASA/JPL-Caltech

NGC 1068

XMM-Newton Spectra of NGC 1068

SGW et al. in prep

Simultaneous Fitting

High Energy Lines

- Expect high energy component to be moving faster than lower two
- Find (with Gaussian components) that lines are blueshifted ~ 2680 km/s
- Therefore fix PION at this velocity
- Find a fourth component is required to solve this problem

Obs.	PION Component	$\frac{N_H}{(10^{25} \text{ m}^{-2})}$	$\frac{\log \xi}{(10^{-9} \text{ W m})}$	v (km s ⁻¹)	$\frac{v_{out}}{(\text{km s}^{-1})}$	$C_{cov} = \frac{\Omega}{4\pi}$
2000	EM1	130 ± 30	$3.82^{+0.01}_{-0.02}$	3600 ⁺³³⁰ a	-75^{+86}_{-216}	$0.13^{+0.07}_{-0.06}$
	EM2	37^{+1}_{-4}	0.69 ± 0.01	$400\pm10^{\ b}$	-260 ± 10	$3.77 \pm 0.10 \times 10^{-2}$
	EM3	21 ± 2	$1.97^{+0.03}_{-0.01}$	888 ± 20 ^b	-150^{+50}_{-5}	$5.64^{+0.92}_{-0.31} \times 10^{-2}$

SGW – MSSL – Photoionisation Modelling of AGN

10/10/19

SGW et al. in prep

Looking into the Future

SGW – MSSL – Photoionisation Modening of AGN

10/10/19

X-IFU (X-ray integral field unit)

SGW – MSSL – Photoionisation Modelling of AGN

Summary

- High resolution X-ray spectroscopy and photoionisation modelling are tools to study highly ionised plasma regions within AGN
- Obtaining distances and parameter measurements of the ELR help to relate it to the WA and outflowing winds
- Recent obscuring events in Seyfert 1 AGN require further investigation
- Outflowing plasma regions will aid us in understanding how AGN and the host galaxy co-evolve through feedback
- Athena will allow for more accurate high resolution X-ray spectra across the full energy band