

Outflowing winds of Active Galactic Nuclei

UC

Sam Grafton-Waters

MSSL

Thanks to:

Graziella Branduardi-Raymont, Mat Page, Missagh Mehdipour, Jelle Kaastra, Ehud Behar, Junjie Mao, Stefano Bianchi, Myrto Symeonidis

Leicester lunch-time talk

10 Dec 2020

UCL

What Are AGN?

- Supermassive black hole at the centre of galaxies
 - $M_{BH} = 10^5 10^{10} M_{\odot}$
 - $L_{bol} = 10^{34} 10^{41} W$
- Powered through the process of accretion
 - Material in the disk heats up as it orbits the black hole,
 - Radiates EM waves
- Process launches material away
- Outflow winds are ionised by the AGN radiation and the signatures are observed in X-ray/UV spectra

Image credit: MIT Kavli Institute for Astrophysics and Space Research

UCL

Motivation for studying Winds

- Main questions:
 - Origin of winds
 - Launching Mechanism
 - Location and Geometry
- M-σ relation
 - Galaxy impact
 - Co-evolution

XMM-Newton

SGW et al. submitted

EPIC-pn/mos: 0.3 – 12 keV RGS: 0.3 – 2.5 keV (6 – 38 A) OM: UV/optical filters

ESA

UCL

Chandra image of NGC 1068

Hα map of NGC 5643 Cresci et al. 2015

Types of Outflowing Wind

1. Warm absorbers

- Narrow lines
- UV and soft X-ray bands
- Multiple components
 - Range of column density and ionisation state §
- Outflow velocity > $10^2 10^3$ km s⁻¹
- Located between torus (origin?) and NLR

NGC 1365: Risaliti et al. 2005

OBS 1

-5

2. UFOs (ultra fast outflows)

- Fe XXV and Fe XXVI absorption lines
- $v_{out} \simeq 0.1 0.4 c$
- Originate from the accretion disk
- Higher column density and ionisation parameter than the WA

3. Obscuring Winds

J. Kaastra et al. 2014

Comparing **Obscurers**

- 2 components
- Covers 40 80 % X-ray flux
- -1000 to 5000 km s⁻¹
- Distances: few 10 light days
- Duration: NGC 5548 > 8 years; NGC 3783 = 32 days

NGC 5548:

- ξ ~ -1.2 to 0

- NGC 3783
- $N_{H} \sim 12 100 \times 10^{25} \text{ m}^{-2}$ $N_{H} \sim 0.5 20 \times 10^{22} \text{ m}^{-2}$
 - ξ~1.8

4. Emission Lines Regions

by Hickox & Alexander 2018

RGS Spectrum of **NGC 1068** from 2000 & 2014; SGW et al. in Review

Analysis of the Winds

Photoionisation Modelling

- Assume photoionisation equilibrium
 - Rate of ionisation = Rate of recombination
- State of the photoionised gas depends on the ionisation parameter $\boldsymbol{\xi}$

PION

- Self consistent model (M. Mehdipour et al. 2016)
- Simultaneously models the continuum and ionised plasma
- Requires SED of AGN
- As continuum varies, recalculates the ionisation balance
- Does not require an ionisation grid e.g. Cloudy or XSTAR

Spectral Energy Distribution (SED)

- X-rays from hot corona
- Reflected X-rays off the torus/disc
- UV/Optical photons from accretion disc

Spectral Modelling

- N_H the line depth
 - 10²⁴ 10²⁸ m⁻²
- $\xi \equiv \frac{L_{ion}}{nr^2}$ ionisation
 - $\log \xi = 0 3$
 - v_{turb} line broadening • ~ $10^1 - 10^2$ km s⁻¹
 - ${oldsymbol v}_{out}$ line centring
 - $> 10^2 10^3 \text{ km s}^{-1}$
 - Blueshifted
 - Multiple components to fit all the emission/ absorption lines

Location of these winds

$$\xi = \frac{L_{ion}}{n_e r^2}$$

- ξ from ionisation modelling
- L_{ion} from SED (13.6 eV 13.6 keV)
- n_e and r are degenerate!
- Plasma responds to changes in SED
- Causing changes in ionisation state and density
- Constrain density to obtain the distance

Seyfert 2

WA and NLR same component of the wind viewed differently? See e.g. Kinkhabwala+02 and Blustin+05

Interaction with the Host Galaxy

Mass outflow rate

$$\dot{M}_{out} \sim \frac{\mu m_{p \, L_{ion} f v \omega}}{\xi}$$

Kinetic luminosity

$$L_K = \frac{1}{2} \dot{M}_{out} v^2$$

- If L_K < few % of L_{bol} then insignificant enough to affect host galaxy (Blustin et al. 2005)
- WA not energetic enough to influence host but UFOs are (Tombesi et al. 2013)

SciTechDaily

Summary

- Different types of outflowing winds:
 - Depends on origin and therefore outflow velocity
 - Depends on how we view them (WA/NLR)
 - Part of same structure?
 - Varying ξ , N_{H} and $v_{\text{out},}$ with different locations

Unanswered questions:

Origin?
Launching mechanisms?

Poorly understood

• Locations?

To understand AGN and galaxy coevolution through feedback